Как определить картографическую проекцию карты. Картографические проекции. Задание для любознательных

Параллелей и меридианов. Вид этой сетки бывает разный в зависимости от того, какой фигурой заменяется эллипсоид.

Искажения

В любой проекции существуют искажения , они бывают четырёх видов:

  • искажения длин
  • искажения углов
  • искажения площадей
  • искажения форм

На различных картах искажения могут быть различных размеров: на крупномасштабных они практически неощутимы, но на мелкомасштабных они бывают очень велики.

Искажения длин

Искажение длин - базовое искажение. Остальные искажения из него логически вытекают. Искажение длин означает непостоянство масштаба плоского изображения, что проявляется в изменении масштаба от точки к точке, и даже в одной и той же точке в зависимости от направления.

Это означает, что на карте присутствует 2 вида масштаба:

  • Главный, он на карте подписывается, но на самом деле это масштаб исходного эллипсоида, развертыванием которого в плоскость карта и получена.
  • Частный масштаб - их бесконечно много на карте, он меняется от точки к точке, и даже в одной точке он может быть разным в разных направлениях.

Для наглядного изображения частных масштабов вводят эллипс искажения .

Искажения площадей

Искажения площадей логически вытекают из искажения длин. За характеристику искажения площадей принимают отклонение площади эллипса искажений от исходной площади на эллипсоиде .

Искажения углов

Искажения углов логически вытекают из искажения длин. За характеристику искажений углов на карте принимают разность углов между направлениями на карте и соответствующими направлениями на поверхности эллипсоида.

Искажения формы

Искажения формы - графическое изображение вытянутости эллипсоида.

Классификация проекций по характеру искажений

Равноугольные проекции

В прямых конических проекциях оси земного шара и конуса совпадают. При этом конус берется или касательный, или секущий.

После проектирования боковая поверхность конуса разрезается по одной из образующих и развертывается в плоскость. При проектировании по методу линейной перспективы получаются перспективные конические проекции, обладающие только промежуточными свойствами по характеру искажений.

В зависимости от размеров изображаемой территории в конических проекциях принимаются одна или две параллели, вдоль которых сохраняются длины без искажений. Одна параллель (касательная) принимается при небольшом протяжении по широте; две параллели (секущие) - при большом протяжении для уменьшения уклонений масштабов от единицы. В литературе их называют стандартными параллелями.

Азимутальные проекции

Псевдоцилиндрические проекции

В псевдоцилиндрических проекциях все параллели изображаются параллельными прямыми, средний меридиан - прямой линией, перпендикулярной параллелям, а остальные меридианы - кривыми. Причём средний меридиан является осью симметрии проекции.

Поликонические проекции

В поликонических проекциях экватор изображается прямой, а остальные параллели изображаются дугами эксцентрических окружностей. Меридианы изображаются кривыми, симметричными относительно центрального прямого меридиана, перпендикулярного экватору.

Кроме вышеперечисленных встречаются и другие проекции, не относящиеся к указанным видам.

По характеру искажений проекции делятся на равноугольные, равновеликие и произвольные.

Равноугольные (или конформные) проекции сохраняют величину углов и формы бесконечно малых фигур . Масштаб длин в каждой точке постоянен по всем направлениям (что обеспечивается закономерным увеличением расстояний между соседними параллелями по меридиану) и зависит только от положения точки. Эллипсы искажений выражаются окружностями различных радиусов.

Для каждой точки в равноугольных проекциях справедливы зависимости:

/ L i = a = b = m = n; а> = 0°; 0 = 90°; k = 1 и а 0 =0° (или ±90°).

Такие проекции особенно удобны для определения направлений и прокладки маршрутов по заданному азимуту (например, при решении навигационных задач).

Равновеликие (или эквивалентные) проекции не искажают площади . В этих проекциях площади эллипсов искажений равны . Увеличение масштаба длин по одной оси эллипса искажений компенсируется уменьшением масштаба длин по другой оси, что вызывает закономерное уменьшение расстояний между соседними параллелями по меридиану и, как следствие, - сильное искажение форм.

Такие проекции удобны для измерения площадей объектов (что, например, существенно для некоторых экономических или морфометрических карт).

В теории математической картографии доказывается, что нет, и не может быть проекции, которая была бы одновременно и равноугольной, и равновеликой . Вообще, чем больше искажения углов, тем меньше искажения площадей и наоборот

Произвольные проекции искажают и углы, и площади . При их построении стремятся найти наиболее выгодное для каждого конкретного случая распределение искажений, достигая как бы некоторого компромисса. Эта группа проекций используется в случаях, когда чрезмерные искажения углов и площадей одинаково нежелательны . По своим свойствам произвольные проекции лежат между равноугольными и равновеликими . Среди них можно выделить равнопромежуточные (или эквидистантные) проекции, во всех точках которых масштаб по одному из главных направлений постоянен и равен главному.

Классификация картографических проекций по виду вспомогательной геометрической поверхности .

По виду вспомогательной геометрической поверхности различают проекции: цилиндрические, азимутальные и конические.

Цилиндрическими называют проекции, в которых сеть меридианов и параллелей с поверхности эллипсоида переносится на боковую поверхность касательного (или секущего) цилиндра, а затем цилиндр разрезается по образующей и развертывается в плоскость (рис. 6).

Рис.6. Нормальная цилиндрическая проекция

Искажения отсутствуют на линии касания и минимальны вблизи нее. Если цилиндр секущий, то имеется две линии касания, а значит 2 ЛНИ. Между ЛНИ искажения минимальны.

В зависимости от ориентировки цилиндра относительно оси земного эллипсоида различают проекции:

– нормальные, когда ось цилиндра совпадает с малой осью земного эллипсоида; меридианы в этом случае представляют собой равноотстоящие параллельные прямые, а параллели – прямые, им перпендикулярные линии;

– поперечные, когда ось цилиндра лежит в плоскости экватора; вид сетки: средний меридиан и экватор – взаимно перпендикулярные прямые, остальные меридианы и параллели – кривые линии (рис. в).

– косые, когда ось цилиндра составляет с осью эллипсоида острый угол; в косых цилиндрических проекциях меридианы и параллели – кривые линии.

Азимутальными называют проекции, в которых сеть меридианов и параллелей переносится с поверхности эллипсоида на касательную (или секущую) плоскость (рис.7).

Рис. 7. Нормальная азимутальная проекция

Изображение около точки касания (или линии сечения) плоскости земного эллипсоида почти совсем не искажается. Точка касания является точкой нулевых искажений.

В зависимости от положения точки касания плоскости на поверхности земного эллипсоида среди азимутальных проекций различают:

– нормальные, или полярные, когда плоскость касается Земли в одном из полюсов; вид сетки: меридианы – прямые линии, радиально расходящиеся из полюса, параллели – концентрические окружности с центрами в полюсе (рис. 7);

– поперечные, или экваториальные, когда плоскость касается эллипсоида в одной из точек экватора; вид сетки: средний меридиан и экватор – взаимно перпендикулярные прямые, остальные меридианы и параллели – кривые линии (в некоторых случаях параллели изображаются прямыми линиями;

косые, или горизонтные, когда плоскость касается эллипсоида в какой-либо точке, лежащей между полюсом и экватором. В косых проекциях только средний меридиан, на котором расположена точка касания, представляет собой прямую, остальные меридианы и параллели – кривые линии.

Коническими называются проекции, в которых сеть меридианов и параллелей с поверхности эллипсоида переносится на боковую поверхность касательного (или секущего) конуса (рис. 8).

Рис. 8. Нормальная коническая проекция

Искажения мало ощутимы вдоль линии касания или двух линий сечения конуса земного эллипсоида, которые являются линией (линиями) нулевых искажений ЛНИ. Подобно цилиндрическим конические проекции делятся на:

– нормальные, когда ось конуса совпадает с малой осью земного эллипсоида; меридианы в этих проекциях представлены прямыми линиями, расходящимися из вершины конуса, а параллели – дугами концентрических окружностей.

– поперечные, когда ось конуса лежит в плоскости экватора; вид сетки: средний меридиан и параллель касания – взаимно перпендикулярные прямые, остальные меридианы и параллели – кривые линии;

– косые, когда ось конуса составляет с осью эллипсоида острый угол; в косых конических проекциях меридианы и параллели – кривые линии.

В нормальных цилиндрических, азимутальных и конических проекциях картографическая сетка ортогональна – меридианы и параллели пересекаются под прямыми углами, что является одним из важных диагностических признаков этих проекций.

Если при получении цилиндрических, азимутальных и конических проекций использовать геометрический метод (линейное проектирование вспомогательной поверхности на плоскость), то такие проекции называют перспективно-цилиндрическими, перспективно-азимутальными (обыкновенными перспективными) и перспективно-коническими соответственно.

Поликоническими называются проекции, в которых сеть меридианов и параллелей с поверхности эллипсоида переносится на боковые поверхности нескольких конусов, каждый из которых разрезается по образующей и развертывается в плоскость. В поликонических проекциях параллели изображаются дугами эксцентрических окружностей, центральный меридиан представляет собой прямую, все остальные меридианы – кривые линии, симметричные относительно центральному.

Условными называются проекции, при построении которых не прибегают к использованию вспомогательных геометрических поверхностей. Сеть меридианов и параллелей строят по какому-нибудь заранее заданному условию. Среди условных проекций можно выделитьпсевдоцилиндрические , псевдоазимутальные и псевдоконические проекции, сохраняющие от исходных цилиндрических, азимутальных и конических проекций вид параллелей. В этих проекцияхсредний меридиан – прямая линия, остальные меридианы – кривые линии .

К условным проекциям относятся также многогранные проекции , которые получают путем проектирования на поверхность многогранника, касающегося или секущего земной эллипсоид. Каждая грань представляет собой равнобочную трапецию (реже – шестиугольники, квадраты, ромбы). Разновидностью многогранных проекций являются многополосные проекции , причем полосы могут нарезаться и по меридианам, и по параллелям. Такие проекции выгодны тем, что искажения в пределах каждой грани или полосы совсем невелики, поэтому их всегда используют для многолистных карт. Основное неудобство многогранных проекций состоит в невозможности совмещения блока листов карт по общим рамкам без разрывов.

Практически ценным является подразделение по территориальному охвату. По территориальному охвату выделяются картографические проекции для карт мира, полушарий, материков и океанов, карт отдельных государств и их частей. По этому принципу построены таблицы-определители картографических проекций. Кроме того, в последнее время предпринимаются попытки к разработке генетических классификаций картографических проекций, построенных на виде описывающих их дифференциальных уравнений. Эти классификации охватывают все возможное множество проекций, но являются крайне ненаглядными, т.к. не связаны с видом сетки меридианов и параллелей.

Картографическая проекция

Картографические проекции можно классифицировать по двум основным признакам:

По характеру искажений;

По виду меридианов и параллелей нормальной картографической сетки.

Картографическая сетка называется нормальной в том случае, если меридианы и параллели на карте в данной проекции изображаются более простыми линиями, чем координатные линии любой другой системы сферических координат.

По характеру искажений проекции делятся на равноугольные (конформные), равновеликие (эквивалентные), равнопромежуточные и произвольные.

Равноугольными (конформными ) называются такие проекции, в которых бесконечно малые фигуры на карте подобны соответствующим фигурам на глобусе. В этих проекциях бесконечно малый круг, взятый на глобусе в любой его точке, при перенесении на карту изобразится также бесконечно малым кругом, т. е. эллипс искажений в равноугольных проекциях обращается в круг. В равноугольных проекциях в бесконечно малых фигурах на карте и на глобусе соответствующие углы равны между собой, а стороны пропорциональны. Например, на рис. 15а, б АoМoКo= АМК, a . Масштабы по меридиану и параллели равны между собой, т. е. Т=п . Угол между меридианами и параллелями на карте = 90°, а общие формулы из теории искажений имеют вид

= т = п = а = B , Р = т2, = 0.

Равенство масштабов показывает, что масштаб в любой точке карты в равноугольных проекциях от направления не зависит. Но

Рис. 1. Бесконечно малый круг на глобусе и на карте в равноугольной проекции

При переходе от точки к точке (при изменении координат точки) масштаб меняется. Это значит, что одинаковые по своим размерам бесконечно малые круги, взятые в разных точках глобуса, изобразятся на карте также бесконечно малыми кругами, но различных размеров (в данном случае под бесконечно малым кругом на глобусе можно понимать круг с диаметром около 1 см).

Равновеликими (эквивалентными) называются такие проекции, в которых масштаб площади во всех точках карты равен единице. В этих проекциях бесконечно малый круг (рис. 2 а),

Рис. 2. Круг на глобусе и эллипс на карте в равновеликой проекции

Взятый на глобусе, изобразится на карте равным по площади бесконечно малым эллипсом (рис. 2 б).

Так как площадь эллипса

а площадь круга-по формуле

То для этих проекций будет справедливо равенство

При =1, свойство равновеликости проекций аналитически выражается равенством

P = Ab = L .

Итак, в равновеликих проекциях произведение масштабов по главным направлениям равно единице.

Если равноугольные проекции сохраняют равенство углов только в бесконечно малых фигурах, то равновеликие проекции сохраняют площади любых фигур независимо от их размеров на карте. В этих проекциях углы между меридианами и параллелями на карте могут быть не равны 90°. Следует помнить, что свойства равноугольности и равновеликости в одной проекции несовместимы, т. е. не может быть таких проекций, которые одновременно сохраняли бы равенство углов и равенство площадей во всех точках карты.

Равнопромежуточными называются такие проекции, в которых в каждой точке карты сохраняются длины по одному из главных направлений. В этих проекциях а =Или b = . При =1 аналитически свойство равнопромежуточности выражается равенством

А=1 Или B =1 .

Иногда под равнопромежуточными понимают и такие проекции, в которых отношение или остается постоянным, хотя и не равным единице.

В равнопромежуточных проекциях круг, взятый в любой точке глобуса (рис. 3 а), изобразится на карте эллипсом (рис. 3 б или 3 в), одна из полуосей которого будет равна радиусу этого круга.

По характеру искажений эти проекции занимают среднее место между равноугольными и равновеликими проекциями. Не сохраняя ни углов, ни площадей, они меньше, чем равновеликие проекции, искажают углы и меньше, чем равноугольные проекции, искажают площади и поэтому применяются в тех случаях, когда нет надобности за счет увеличения искажения площадей сохранить равенство углов или, наоборот, за счет увеличения искажения углов сохранить равенство площадей.

Произвольными называются такие проекции, которые не обладают свойствами равноугольности, равновеликости или равнопромежуточности. Класс произвольных проекций является наиболее обширным, сюда могут быть включены проекции, резко отличающиеся друг от друга по характеру искажений.

Произвольные проекции применяются в основном для карт мелкого масштаба, в частности для карт полушарий и мировых, и в отдельных случаях для карт крупного масштаба.

Рис. 3. Круг на глобусе и эллипсы на карте в равнопромежуточной проекции

По виду меридианов и параллелей нормальной картографической сетки проекции подразделяются на конические, цилиндрические, азимутальные, псевдоконические, псевдоцилиндрические, поликонические и прочие. Причем в пределах каждого из этих классов могут быть разные по характеру искажений проекции (равноугольные, равновеликие и т. д.).

Конические проекции

Коническими называются такие проекции, в которых параллели нормальной сетки изображаются дугами концентрических окружностей, а меридианы - их радиусами, углы между которыми на карте пропорциональны соответствующим разностям долгот в натуре.

Геометрически картографическую сетку в этих проекциях можно получить путем проектирования меридианов и параллелей на боковую поверхность конуса с последующим развертыванием этой поверхности в плоскость.

Представим себе конус, касающийся глобуса по некоторой параллели АоВоСо (рис. 4). Продолжим плоскости географических меридианов и параллелей глобуса до пересечения их с поверхностью конуса. Линии пересечения указанных плоскостей с поверхностью конуса примем соответственно за изображения меридианов и параллелей глобуса. Разрежем поверхность конуса по образующей и развернем ее в плоскость; тогда получим на плоскости картографическую сетку в одной из конических проекций (рис. 5).

Параллели с глобуса на поверхность конуса можно перенести и другими способами, а именно: путем проектирования лучами, исходящими из центра глобуса или из некоторой точки, находящейся на оси конуса, путем откладывания на меридианах проекции в обе стороны от параллели касания выпрямленных дуг меридианов глобуса, заключенных между параллелями, и последующего проведения через точки отложения концентрических окружностей из точки S (рис. 5), как из центра. В последнем случае параллели на плоскости будут расположены на таком же расстоянии друг от друга, как и на глобусе.

При указанных выше способах перенесения географической сетки с глобуса на поверхность конуса параллели на плоскости будут

Рис.4 Конус, касающийся Глобуса по параллели.

Рис. 5 Отложения концентрических окружностей.

Картографическая сетка в конической проекции изображаться дугами концентрических окружностей, а меридианы будут представлять собой прямые, исходящие из одной точки и составляющие между собой углы, пропорциональные соответствующим разностям долгот.

Последняя зависимость может быть выражена уравнением

Где угол между соседними меридианами на карте, называемый углом схождения, или сближения, меридианов на плоскости,

Разность долгот тех же меридианов,

Коэффициент пропорциональности, называемый показателем конической проекции. В конических проекциях Всегда меньше единицы.

Радиусы Параллелей на карте зависят от широты этих параллелей, т. е.

Таким образом, картографическую сетку можно сразу построить на плоскости, минуя проектирование на вспомогательную поверхность конуса, если известны показательИ зависимость между и .

При выборе конических проекций для изображения данной территории необходимо найти такое значение а и такую зависимость р от ср, чтобы получить требуемую по характеру искажений проекцию (равноугольную, равновеликую, равнопромежуточную или произвольную) с возможно меньшими искажениями в целом.

Конус по отношению к глобусу может быть расположен различно. Ось конуса может совпадать с полярной осью глобуса РР, составлять с нею угол в 90° и, наконец, пересекать ее под произвольным углом. В первом случае конические проекции называются нормальными (прямыми) , во втором - поперечными и в третъем - косыми. На рис. 7 показано положение конусов при нормальной (а), поперечной (б) и косой (в) конических проекциях. Каждая из них в свою очередь может быть на касательном или секущем конусе.

Очевидно, что в поперечной и косой конических проекциях при любых способах проектирования с глобуса на поверхность конуса меридианы и параллели изобразятся в виде сложных кривых линий. Сходящимися прямыми линиями и концентрическими окружностями на поверхности конуса в этих случаях соответственно изобразятся дуги больших кругов, проходящих через точки пересечения оси конуса с поверхностью глобуса, и перпендикулярные им дуги малых кругов. Указанные дуги больших кругов на сфере называются вертикалами, а дуги малых кругов - альмукантаратами.

Картографическая сетка имеет наиболее простой вид в нормальных конических проекциях, в которых она носит название нормальной, или прямой, сетки. В поперечных проекциях картографическая сетка называется поперечной, а в косых проекциях - косой.

Во всех нормальных конических проекциях, за исключением равноугольных, полюс изображается дугой. В равноугольных конических проекциях полюс изображается точкой.

Вид картографической сетки в нормальных конических проекциях для изображения северного полушария показан на рис. 8 (равнопромежуточная коническая проекция).

В нормальных конических проекциях линиями нулевых искажений являются параллели сечения или параллель касания, а изоколы совпадают с параллелями. Искажения нарастают в обе стороны по мере удаления от этих параллелей, причем масштаб по параллелям

На карте между параллелями сечения всегда меньше единицы, на параллели касания и на параллелях сечения равен единице, а в остальных местах больше единицы и возрастает по мере удаления от этих параллелей к полюсам. Аналитически конические проекции на касательном конусе характеризуются выражением

А на секущем конусе - выражением

Где - минимальный масштаб по параллели.

Конические проекции нашли широкое применение для изображения территорий, вытянутых узкой или широкой полосой вдоль параллелей. В первом случае выгоднее применять конические проекции на касательном конусе, во втором - на секущем конусе. В частности, для карт Украины широко используются конические проекции на секущем конусе.

Поперечные и косые конические проекции выгодно применять соответственно для карт стран, вытянутых вдоль дуг малых кругов, параллельных осевому меридиану, и дуг малых кругов произвольного направления, но эти проекции ввиду сложности их вычисления практического применения не нашли.

Цилиндрические проекции

Цилиндрическими называются такие проекции, в которых параллели нормальной сетки изображаются параллельными прямыми, а меридианы - равноотстоящими прямыми, перпендикулярными к линиям параллелей.

Геометрически картографическую сетку в этих проекциях можно получить путем проектирования меридианов и параллелей глобуса на боковую поверхность цилиндра с последующим развертыванием этой поверхности в плоскость.

Рис.8. Картографическая сетка в равнопромежуточной конической проекции.

Представим себе цилиндр, касающийся глобуса по экватору (рис. 9) Продолжим плоскости географических меридианов и параллелей до пересечения с боковой поверхностью цилиндра. Примем соответственно за изображения меридианов и параллелей на поверхности цилиндра линии пересечения указанных плоскостей с поверхностью цилиндра. Разрежем поверхность цилиндра по образующей и развернем ее в плоскость. Тогда на этой плоскости получится картографическая сетка в одной из цилиндрических проекции как и в конических проекциях, параллели нормальной картографической сетки можно перенести на поверхность цилиндра и другими способами, а именно: путем проектирования лучами, исходящими из центра глобуса или из некоторой точки, находящейся на оси цилиндра путем откладывания на меридианах проекции в обе стороны от экватора выпрямленных дуг меридианов глобуса, заключенных между параллелями, и последующего проведения через точки отложения прямых, параллельных экватору. В последнем случае параллели на карте будут расположены на одинаковом расстоянии друг от друга.

Рассмотренная цилиндрическая проекция (рис. 9) является проекцией на касательном цилиндре. Таким же образом можно построить и проекцию на секущем цилиндре.

На рис 10 показан цилиндр, секущий глобус по параллелям AFB и CKD. Очевидно, что в первом случае на экваторе (рис. 9), а во втором случае на параллелях сечения AFB и CKD (рис. 10) масштаб, на карте будет равен главному, т. е. экватор

Рис. 9. Цилиндр, касающийся глобуса по экватору, и часть поверхности цилиндра, развернутая в плоскость и указанные параллели сечения будут сохранять свою длину на карте. Цилиндр по отношению к глобусу может быть расположен различно.

Рис. 10. Цилиндр, секущий глобус по параллелям

В зависимости от положения оси цилиндра относительно оси глобуса цилиндрические проекции, подобно коническим, могут быть нормальными, поперечными и косыми. В соответствии с этим и картографическая сетка в этих проекциях будет иметь название нормальной, поперечной и косой. Поперечные и косые картографические сетки в цилиндрических проекциях имеют вид сложных кривых линий.

Как и в случае с коническими проекциями, для построения нормальных сеток цилиндрических проекций нет надобности проектировать поверхность глобуса сначала на цилиндр, а затем последний развертывать в плоскость. Для этого достаточно знать прямоугольные координаты х и у точек пересечения параллелей и меридианов на плоскости. Причем в цилиндрических проекциях абсциссы х выражают собой удаление параллелей от экватора, а ординаты у-удаление меридианов от среднего (осевого) меридиана.

Исходя из этого, общие уравнения всех нормальных цилиндрических проекций можно представить в виде:

Где С - постоянный множитель, представляющий собой радиус экватора (для проекций на касательном цилиндре) или радиус параллели сечения глобуса (для проекций на секущем цилиндре),

И - широта и долгота данной точки, выраженные в радианной мере,

Х, у - прямоугольные координаты той же точки на карте. В зависимости от выбора функции Цилиндрические проекции могут быть по характеру искажений равноугольными, равновеликими, равнопромежуточными или произвольными. Зависимостью же х от среднего определяются и расстояния между параллелями на карте. Расстояния между меридианами зависят от множителя С. Таким образом, выбирая ту или иную зависимость х от и то или иное значение С, можно получить требуемую проекцию как по характеру искажений, так и по распределению их относительно экватора или средней параллели карты (параллели сечения).

Рис 11 Картографическая сетка в квадратной цилиндрической проекции.

Вид картографической сетки в нормальных цилиндрических проекциях для изображения всей земной поверхности показан на рис. 11 (квадратная цилиндрическая проекция).

В цилиндрических проекциях так же, как и в конических, линиями нулевых искажений в нормальных картографических сетках являются параллели сечения или параллель касания, а изоколы совпадают с параллелями. Искажения нарастают по мере удаления от параллели касания (параллелей сечения) в обе стороны.

Нормальные цилиндрические проекции применяются в основном для изображения территорий, вытянутых вдоль экватора, и сравнительно редко для изображения территорий, вытянутых по произвольной параллели, так как в последнем случае они дают большие искажения, чем конические проекции.

В поперечных и косых цилиндрических проекциях линией нулевых искажений является дуга большого круга, по которой цилиндр касается шара или эллипсоида. Изоколы изображаются прямыми, параллельными линии нулевых искажений, а искажения нарастают в обе стороны от линии нулевых искажений.

Поперечные цилиндрические проекции применяются для изображения территорий, вытянутых вдоль меридиана, а косые - для изображения территорий, вытянутых в произвольном направлении по дуге большого круга.

Азимутальные проекции

Азимутальными (зенитальными) называются такие проекции, в которых параллели нормальной сетки изображаются концентрическими окружностями, а меридианы - их радиусами, углы между которыми равны соответствующим разностям долгот в натуре. Геометрически картографическую сетку в этих проекциях можно получить следующим образом. Если через ось глобуса и меридианы провести плоскости до их пересечения с плоскостью, касательной к глобусу в одном из полюсов, то на последней образуются меридианы в азимутальной проекции. При этом углы между меридианами на плоскости будут равны соответствующим двугранным углам на глобусе, т. е. разностям долгот меридианов. Для получения параллелей в азимутальной проекции из точки пересечения меридианов проекции, как из центра, следует провести концентрические окружности радиусами, равными, например, выпрямленным дугам меридианов от полюса до соответствующих параллелей. При таких радиусах параллелей получится равнопромежуточная азимутальная проекция

Плоскость может не только касаться, но и сечь поверхность глобуса по некоторому малому кругу, от этого сущность азимутальной проекции не меняется. Так же, как и в конических проекциях, в зависимости от расположения плоскости относительно полярной оси глобуса картографическая сетка в азимутальных проекциях может быть нормальной (прямой), поперечной и косой. При нормальной картографической сетке плоскость касается глобуса в одном из полюсов, при поперечной - в точке, лежащей на экваторе, и при косой - в Некоторой произвольной точке с широтой больше 0° и меньше 90°. Нормальные азимутальные проекции называются также полярными, поперечные - экваториальными и косые - горизонтальными азимутальными проекциями.

Исходя из определения нормальных азимутальных проекций, их общие уравнения можно выразить так

В зависимости от характера связи между радиусом параллели на карте и ее широтой азимутальные проекции по характеру искажений могут быть равноугольными, равновеликими, равнопромежуточными и произвольными.

Рис 12 Картографическая сетка и изоколы углов в косой азимутальной проекции.

В азимутальных проекциях на касательной плоскости точка касания шара или эллипсоида является точкой нулевых искажений, а в проекциях на секущей плоскости окружность сечения служит линией нулевых искажений В обоих случаях изоколы имеют вид концентрических окружностей, совпадающих с параллелями нормальной сетки. Искажения нарастают по мере удаления от точки нулевых искажений (от линии нулевых искажений).

Нормальные, поперечные и косые азимутальные проекции нашли широкое применение для изображения территорий, имеющих округлую форму. В частности, для изображения северного и южного полушарий употребляются только нормальные, а западного и восточного полушарий - только поперечные азимутальные проекции. Косые азимутальные проекции применяются для карт отдельных материков. Вид картографической сетки и изокол углов в одной из косых азимутальных проекций показан на рис. 12. Частным случаем азимутальных проекций являются проекции перспективные.

Перспективными называются такие проекции, в которых параллели и меридианы с шара или эллипсоида переносятся на плоскость по законам линейной перспективы, т. е. при помощи прямых лучей, исходящих из так называемой точки зрения. При этом принимается обязательное условие, чтобы точка зрения находилась на главном луче, т. е. на линии, проходящей через центр шара или эллипсоида, а плоскость проекции (картинная плоскость) была перпендикулярна к этому лучу.

Классификация картографических проекций - 4.2 out of 5 based on 6 votes

Картографическая проекция

Картографи́ческая прое́кция - математически определенный способ отображения поверхности эллипсоида на плоскости.

Суть проекций связана с тем, что фигуру Земли - эллипсоид, не развертываемый в плоскость, заменяют на другую фигуру, развёртываемую на плоскость. При этом с эллипсоида на другую фигуру переносят сетку параллелей и меридианов. Вид этой сетки бывает разный в зависимости от того, какой фигурой заменяется эллипсоид.

Искажения

В любой проекции существуют искажения , они бывают четырёх видов:

  • искажения длин
  • искажения углов
  • искажения площадей
  • искажения форм

На различных картах искажения могут быть различных размеров: на крупномасштабных они практически неощутимы, но на мелкомасштабных они бывают очень велики.

Искажения длин

Искажение длин - базовое искажение. Остальные искажения из него логически вытекают. Искажение длин означает непостоянство масштаба плоского изображения, что проявляется в изменении масштаба от точки к точке, и даже в одной и той же точке в зависимости от направления.

Это означает, что на карте присутствует 2 вида масштаба:

  • Главный, он на карте подписывается, но на самом деле это масштаб исходного эллипсоида, развертыванием которого в плоскость карта и получена.
  • Частный масштаб - их бесконечно много на карте, он меняется от точки к точке и даже в пределах одной точки.

Для наглядного изображения частных масштабов вводят Эллипс искажения .

Искажения площадей

Искажения площадей логически вытекают из искажения длин. За характеристику искажения площадей принимают отклонение площади эллипса искажений от исходной площади на эллипсоиде .

Искажения углов

Искажения углов логически вытекают из искажения длин. За характеристику искажений углов на карте принимают разность углов между направлениями на карте и соответствующими направлениями на поверхности эллипсоида.

Искажения формы

Искажения формы - графическое изображение вытянутости эллипсоида.

Классификация проекций по характеру искажений

Равноугольные проекции

В прямых конических проекциях оси земного шара и конуса совпадают. При этом конус берется или касательный, или секущий.

После проектирования боковая поверхность конуса разрезается по одной из образующих и развертывается в плоскость. При проектировании по методу линейной перспективы получаются перспективные конические проекции, обладающие только промежуточными свойствами по характеру искажений.

В зависимости от размеров изображаемой территории в конических проекциях принимаются одна или две параллели, вдоль которых сохраняются длины без искажений. Одна параллель (касательная) принимается при небольшом протяжении по широте; две параллели (секущие) - при большом протяжении для уменьшения уклонений масштабов от единицы. В литературе их называют стандартными параллелями.

Азимутальные проекции

В азимутальных проекциях параллели изображаются концентрическими окружностями, а меридианы - пучком прямых, исходящих из центра

Углы между меридианами проекции равны соответствующим разностям долгот. Промежутки между параллелями определяются принятым характером изображения (равноугольным или другим) или способом проектирования точек земной поверхности на картинную плоскость. Нормальная сетка азимутальных проекций ортогональна. Их можно рассматривать как частный случай конических проекций.

Применяются прямые, косые и поперечные азимутальные проекции, что определяется широтой центральной точки проекции, выбор которой зависит от расположения территории. Меридианы и параллели в косых и поперечных проекциях изображаются кривыми линиями, за исключением среднего меридиана, на котором находится центральная точка проекции. В поперечных проекциях прямой изображается также экватор: он является второй осью симметрии.

В зависимости от искажений, азимутальные проекции подразделяются на равноугольные, равновеликие и с промежуточными свойствами. В проекции масштаб длин может сохраняться в точке или вдоль одной из параллелей (вдоль альмукантарата). В первом случае предполагается касательная картинная плоскость, во втором - секущая. В прямых проекциях формулы даются для поверхности эллипсоида или шара (в зависимости от масштаба карт), в косых и поперечных - только для поверхности шара.

Азимутальную равновеликую проекцию называют также стереографической. Она получается проведением лучей из некоторой фиксированной точки поверхности Земли на плоскость, касательную к поверхности Земли в противолежащей точке.

Особый вид азимутальной проекции - гномоническая . Она получается проведением лучей из центра Земли к некоторой касательной к поверхности Земли плоскости. Гномоническая проекция не сохраняет ни площадей, ни углов, но зато на ней кратчайший путь между любыми двумя точками (то есть дуга большого круга) всегда изображается прямой линией; соответственно меридианы и экватор на ней изображаются прямыми линиями.

Псевдоконические проекции

В псевдоконических проекциях параллели изображаются дугами концентрических окружностей, один из меридианов, называемый средним - прямой линией, а остальные - кривыми, симметричными относительно среднего.

Примером псевдоконической проекции может служит равновеликая псевдоконическая проекция Бонна.

Псевдоцилиндрические проекции

В псевдоцилиндрических проекциях все параллели изображаются параллельными прямыми, средний меридиан - прямой линией, перпендикулярной параллелям, а остальные меридианы - кривыми. Причём средний меридиан является осью симметрии проекции.

Поликонические проекции

В поликонических проекциях экватор изображается прямой, а остальные параллели изображаются дугами эксцентрических окружностей. Меридианы изображаются кривыми, симметричными относительно центрального прямого меридиана, перпендикулярного экватору.

Кроме вышеперечисленных встречаются и другие проекции, не относящиеся к указанным видам.

См. также

Ссылки

  • // БСЭ

Проекция Математически определенный способ отображения поверхности шара или эллипсоида на плоскость, используемый для создания картографического произведения. [ГОСТ 21667 76] Тематики картография Обобщающие термины математическая картография… …

картографическая проекция - Математический способ изображения, а также собственно изображение поверхности эллипсоида или шара на плоскости географической картыСловарь по географии

Отображение всей поверхности земного эллипсоида или какой либо ее части на плоскость, получаемое в основном с целью построения карты. К. п. чертят в определенном масштабе. Уменьшая мысленно земной эллипсоид в Мраз, получают его геометрич. модель… … Математическая энциклопедия

Математически определённое отображение поверхности земного шара, эллипсоида (или глобуса) на плоскость карты. Проекция устанавливает соответствие между географическими координатами точки (широтой В и долготой L) и её прямоугольными координатами… … Географическая энциклопедия

псевдоазимутальная картографическая проекция - картографическая проекция Картографическая проекция, в которой параллели нормальной сетки концентрические окружности или их дуги, а меридианы кривые, исходящие из центра параллелей, симметричные относительно одного или двух прямолинейных… … Справочник технического переводчика

равновеликая картографическая проекция - равновеликая проекция Н.д.п. авталическая проекция гомолографическая проекция равноплощадная проекция эквивалентная проекция Картографическая проекция, в которой отсутствуют искажения площадей. [ГОСТ 21667 76] Недопустимые, нерекомендуемые… … Справочник технического переводчика

равноугольная картографическая проекция - равноугольная проекция Ндп. конформная проекция ортоморфная проекция изогональная проекция автогональная проекция Картографическая проекция, в которой отсутствуют искажения углов. [ГОСТ 21667 76] Недопустимые, нерекомендуемые автогональная… … Справочник технического переводчика

азимутальная картографическая проекция - азимутальная проекция Ндп. зенитальная проекция Картографическая проекция, в которой параллели нормальной сетки концентрические окружности, а меридианы их радиусы, углы между которыми равны соответствующим разностям долгот. [ГОСТ 21667 76]… … Справочник технического переводчика

равнопромежуточная картографическая проекция - равнопромежуточная проекция Ндп. эквидистантная проекция Произвольная картографическая проекция, в которой масштаб по одному из главных направлений постоянная величина. [ГОСТ 21667 76] Недопустимые, нерекомендуемые эквидистантная проекция… … Справочник технического переводчика

коническая картографическая проекция - коническая проекция Картографическая проекция, в которой параллели нормальной сетки дуги концентрических окружностей, а меридианы их радиусы, углы между которыми пропорциональны соответствующим разностям долгот. [ГОСТ 21667 76] Тематики… … Справочник технического переводчика

Карта — плоское, искаженное изображение земной поверхности, на котором искажения подчинены определенному математическому закону.
Положение любой точки на плоскости может быть определено пересечением двух координатных линий, которые однозначно соответствовали бы координатным линиям на Земле (?, ?). Отсюда следует, что для получения плоского изображения земной поверхности нужно сначала нанести на плоскость систему координатных линий, которая соответствовала бы таким же линиям на сфере. Имея нанесенную на плоскость систему меридианов и параллелей, можно теперь нанести на эту сетку любые точки Земли.
Картографическая сетка — условное изображение географической сетки земных меридианов и параллелей на карте в виде прямых или кривых линий.
Картографическая проекция — способ построения картографической сетки на плоскости и изображение на ней сферической поверхности Земли, подчиненный определенному математическому закону.
Картографические проекции по характеру искажений делятся на:
1. Равноугольные (конформные) = проекции, не искажающие углов. Сохраняется подобие фигур. Масштаб изменяется с изменением? и?. Отношение площадей не сохраняется (о. Гренландия? Африке, SАфр. ? 13,8 Sо.Гренландия).
2. Равновеликие (эквивалентные) — проекции, на которых масштаб площадей везде одинаков и площади на картах пропорциональны соответствующим площадям в натуре. Равенства углов и подобия фигур не сохраняются. Масштаб длин в каждой точке не сохраняется по разным направлениям.
3. Произвольные — проекции, заданные несколькими условиями, но не обладающие ни свойствами равноугольности, ни свойствами равновеликости. Ортодромическая проекция — дуга большого круга изображается прямой линией.

Картографические проекции по способу построения картографической сетки делятся на:
1. Цилиндрические — проекции, на которых картографическая сетка меридианов и параллелей получается путем проецирования земных координатных линий на поверхность цилиндра, касающегося условного глобуса (или секущего его), с последующей разверткой этого цилиндра на плоскость.
Прямая цилиндрическая проекция — ось цилиндра совпадает с осью Земли;
Поперечная цилиндрическая проекция — ось цилиндра перпендикулярна оси Земли;
Косая цилиндрическая проекция — ось цилиндра расположена к оси Земли под углом отличным от 0° и 90°.
2. Конические — проекции, на которых картографическая сетка меридианов и параллелей получается путем проецирования земных координатных линий на поверхность конуса, касающегося условного глобуса (или секущего его), с последующей разверткой этого конуса на плоскость. В зависимости от положения конуса относительно оси Земли различают:
Прямую коническую проекцию — ось конуса совпадает с осью Земли;
Поперечную коническую проекцию — ось конуса перпендикулярна оси Земли;
Косую коническую проекцию — ось конуса расположена к оси Земли под углом отличным от 0° и 90°.
3. Азимутальные — проекции, в которых меридианы — радиальные прямые, исходящие из одной точки (центральной), под углами равными соответствующим углам в натуре, а параллели?-концентрические окружности, проведенные из точки схождения меридианов (ортографические, внешние, стереографические, центральные, полярные, экваториальные, горизонтные).
Меркаторская проекция
Предложенная Меркатором проекция относится к разряду нормальных цилиндрических равноугольных проекций.
Карты, построенные в этой проекции, называются меркаторскими, а проекция — проекция Меркатора или меркаторская проекция.
В меркаторской проекции все меридианы и параллели прямые и взаимноперпендикулярные линии, а линейная величина каждого градуса широты постепенно увеличивается с возрастанием широты, соответственно растягиванию параллелей, которые все в этой проекции по длине равны экватору.
Проекция Меркатора по характеру искажений относится к классу равноугольных.
Для получения морской навигационной карты в проекции Меркатора условный глобус помещают внутрь касательного цилиндра таким образом, чтобы их оси совпали.
Затем проецируют из центра глобуса меридианы на внутренние стенки цилиндра. При этом все меридианы изобразятся прямыми, параллельными между собой и перпендикулярными экватору линиями. Расстояния между ними равны расстояниям между теми же меридианами по экватору глобуса. Все параллели растянутся до величины экватора. При этом параллели, ближайшие к экватору, растянутся на меньшую величину и по мере удаления от экватора и приближения к полюсу величина их растяжения увеличивается.
Закон растяжения параллелей (рис. 1).

а) б) в)
Рис. 1. Закон растяжения параллелей
R и r – радиус Земли и произвольной параллели (СС?).
? – широта произвольной параллели (СС?).
Из прямоугольного треугольника ОС?К получим:
R = r sec?
Обе части равенства умножим на 2?, получим:
2? R = 2? r sec?
где 2? R – длина экватора;
2? r – длина параллели в широте?.
Следовательно, длина экватора равна длине соответствующей параллели, умноженной на секанс широты этой параллели. Все параллели, удлиняясь до длины экватора, растягиваются пропорционально sec?.
Разрезав цилиндр по одной из образующих, и развернув его на плоскость, получим сетку взаимно перпендикулярных меридианов и параллелей (рис. 1б).
Эта сетка не удовлетворяет требованию равноугольности, т.к. изменились расстояния между меридианами по параллели, ибо каждая параллель растянулась и стала равной длине экватора. В результате фигуры с поверхности Земли перенесутся на сетку в искаженном виде. Углы в природе не будут соответствовать углам на сетке.
Очевидно, для того, чтобы не было искажений, т.е. чтобы сохранить на карте подобие фигур, а следовательно, и равенство углов, необходимо все меридианы в каждой точке растянуть на столько, на сколько растянулись в данной точке параллели, т.е. пропорционально sec?. При этом эллипс на проекции вытянется в направлении малой полуоси и станет кругом, подобным острову круглой формы на поверхности Земли. Радиус круга станет равным большой полуоси эллипса, т.е. будет в sec? раз больше круга на поверхности Земли (рис. 1в).
Полученная таким образом картографическая сетка и проекция будут полностью удовлетворять требованиям, предъявленным к морским навигационным картам, т.е. проекцией Меркатора.
Поперечная цилиндрическая проекция
Поперечная цилиндрическая проекция применяется для составления морских навигационных карт и карт-сеток на приполюсные районы для?Г > 75?80°N(S).
Как и нормальная цилиндрическая проекция Меркатора, эта проекция является равноугольной (не искажает углы).
При построении и использовании карт в данной проекции применяется система квазигеографических координат («квази» (лат.) – как бы»), которая получается следующим образом (рис. 2):

Рис. 2. Поперечная цилиндрическая проекция
? Северный полюс условно помещается в точку с координатами: ?Г = 0°, ?Г = 180° (р-н Тихого океана), а южный полюс – в точку с координатами: ?Г = 0°, ?Г = 0° (р-н Гвинейского залива).
Полученные точки называются квазиполюсами: PNq – северным, PSq – южным.
? Проведя квазимеридианы и квазипараллели относительно квазиполюсов, получим новую систему координат, повернутую на 90° относительно географической.
Координатными осями этой системы будут:
1. начальный квазимеридиан – большой круг, проходящий через северный географический полюс (PN) и квазиполюсы (PNq и PSq), он совпадает с географическим (?Г = 0° и?Г = 180°) Гринвичским (начальным) меридианом;
2. квазиэкватор – большой круг, проходящий через географический полюс (PN) и точки на экваторе с долготами: ?Г = 90°Е (р-н Индийского океана) и?Г = 90°W (р-н Галапагоских островов).
Координатными линиями этой системы являются:
3. квазимеридианы – большие круги, проходящие через квазиполюсы;
4. квазипараллели – малые круги, плоскости которых параллельны плоскости квазиэкватора.
Положение любой точки на поверхности Земли на картах в поперечной цилиндрической проекции определяется квазиширотой (?q) и квазидолготой (?q).
? Квазиширота (?q) — угол при центре Земли (шара) между плоскостью квазиэкватора и радиусом, проведенным в данную точку земной поверхности. Квазиширота определяет положение квазипараллелей; отсчитывается от квазиэкватора к квазиполюсам: к PNq — + ?q и к PSq — –?q от 0° до 90°.
? Квазидолгота (?q) — двугранный угол при квазиполюсе между плоскостями начального квазимеридиана и квазимеридиана данной точки. Квазидолгота определяет положение квазимеридианов; отсчитывается от географического полюса PN по квазиэкватору к востоку (+?q) и к западу (–?q) от 0° до 180°.
Началом отсчета квазигеографических координат является географический северный полюс (т. PN).
Основные уравнения поперечной цилиндрической равноугольной проекции имеют вид:

y = R ?q; m = n = sec ?q
где

– радиус Земли (м);
m и n – частные масштабы по квазимеридиану и квазипараллели.

где а = 3437,74?.
Для эллипсоида Красовского: а = 6378245 м.
Переход от географических координат к квазикоординатам выполняется по формулам:
sin ?q = ?cos ? cos ?; tg ?q = ctg ? sin ?
sin ? = ?cos ?q cos ?q; tg ? = ?ctg ?q sin ?q
Прямой линией на такой карте изображается квазилоксодромия, пересекающая квазимеридианы под одним и тем же квазикурсом Кq (рис. 3).

Рис. 3. Квазилоксодромия
Локсодромия, вследствие кривизны географических меридианов, сходящихся на полюсе, будет изображаться кривой линией, обращенной выпуклостью к экватору.
Ортодромия же представит собой кривую малой кривизны, обращенную выпуклостью в сторону ближайшего квазиполюса.
Таким образом, при построении квазигеографической сетки карты используются формулы, аналогичные формулам для нормальной проекции Меркатора с заменой в них географических координат квазигеографическими.
Главный масштаб карт и карт-сеток относят к квазиэкватору.
Географические меридианы изображаются кривыми, близкими к прямым линиям.
Географические параллели изображаются кривыми линиями, близкими к окружностям.
Квазикурс (Кq) – угол между квазисеверной частью квазимеридиана и направлением носовой части продольной оси судна (отсчитывается по часовой стрелке от 0° до 360°).
Для перехода от географических направлений к направлениям в квазигеографической системе координат используется угол перехода Q – угол между географическим меридианом и квазимеридианом, значение которого можно получить из треугольника АPNPNq (рис. 2).

Кq = ИК? Q
В широтах >80°, когда соs ?q ? 1, получим:
sin Q = sin ?
т.е. в высоких широтах угол перехода практически равен долготе точки.
Прокладка курса на такой карте относительно географических или квазигеографических меридианов осуществляется по формуле:
ИК = Кq + ?; Кq = ИК? ?
Для прокладки расстояний необходимо пользоваться специальными вертикальными шкалами с линейным масштабом в морских милях, находящимися за боковыми рамками карт.
Для приполюсных районов Северного Ледовитого океана (СЛО) издаются карты М 1:500.000, на которых красным цветом нанесены квазипараллели, а черным цветом – географические меридианы и параллели с двойной оцифровкой красным и зеленым цветом. Это позволяет использовать карту-сетку в двух районах, симметричных относительно географических меридианов 0°…..180° и 90°Е…..90°W.
По аналогии с нормальной проекцией Меркатора на картах и картах-сетках в поперечной проекции Меркатора прямой линией изображается квазилоксодромия – кривая на поверхности Земли, пересекающая квазимеридианы под постоянным углом Кq (при?q ? 15° ее можно принимать за кратчайшую линию).
Уравнение квазилоксодромии:
?q2 ? ?q1 = tg Кq (Dq2 ? Dq1)
где?q2 ? ?q1 – разность квазидолгот точек;
Dq2 ? Dq1 – разность квазимеридиональных частей (табл. 26 «МТ-75» или табл. 2.28а «МТ-2000»).
Если известен главный масштаб карты или карты-сетки
МГ = 1: CГ
по квазиэкватору, то частный масштаб
МТ = 1: CТ
в точке с квазиширотой?q вычисляется по формуле:
МТ = МГ sec ?qТ
или
CТ = CГ cos ?qТ
(масштаб карт увеличивается по мере удаления от квазиэкватора).
Перспективные картографические проекции
Перспективные проекции применяются для составления некоторых справочных и вспомогательных карт (обзорные карты обширных районов, ортодромические карты, ледовые карты и пр.).
Эти проекции представляют собой частный случай азимутальных проекций.
(Азимутальные проекции – проекции, в которых меридианами являются радиальные прямые, исходящие из одной точки (центральной точки) под углами, равными соответствующим углам в натуре, а параллели – концентрические окружности, проведенные из точки схождения меридианов).

Рис. 4. Перспективные проекции
В перспективных проекциях (рис. 4) поверхность Земли (сферы) переносится на картинную плоскость методом проецирования с помощью пучка прямых, исходящих из одной точки – точки зрения (ТЗ).
Картинная плоскость может отстоять от поверхности сферы на некотором расстоянии (КП1), касаться сферы (КП2), или пересекать ее.
Точка зрения (т. О) лежит в одной из точек на перпендикуляре к картинной плоскости, проходящем через центр сферы.
Точку пересечения картинной плоскости с перпендикуляром называют центральной точкой карты (ЦТ).
В зависимости от положения точки зрения (ТЗ) одна и та же точка (т. К0) будет отстоять на различных расстояниях? от ЦТ карты, что и будет определять характер искажений, присущих данной проекции.
Наиболее распространенными перспективными проекциями являются – гномоническая (центральная) и стереографическая.
В гномонической проекции точка зрения (ТЗ) совпадает с центром сферы (ТЗ — в т. О1).
Сетка меридианов и параллелей карты строится по формулам, связывающим прямоугольные координаты точек с их географическими координатами.
В зависимости от положения центральной точки (ЦТ) карты, гномоническая проекция может быть (рис. 5):
a. нормальной (полярной) – если центральная точка (ЦТ) совмещена с географическими полюсом (рис. 5а);
b. экваториальной (поперечной) – если центральная точка (ЦТ) расположена на экваторе (рис. 5б);
c. косой – если центральная точка (ЦТ) расположена в некоторой промежуточной широте (рис. 5в).

а) б) в)
Рис. 5. Гномонические проекции
Общие свойства карт в гномонической проекции:
1) большие искажения как формы, так и размеров фигур, возрастающие по мере удаления от центральной точки (ЦТ) карты, поэтому измерение расстояний и углов на такой карте затруднено.
Измеряемые по карте углы и расстояния, называемые гномоническими, могут довольно значительно отличаться от истинных значений, вследствие чего для точных измерений карты в данной проекции не применяются;
2) отрезки дуги большого круга (ортодромии) изображаются прямыми линиями, что позволяет использовать гномоническую проекцию при построении ортодромических карт.
Карты в гномонической проекции строятся, как правило, в мелких масштабах для участков поверхности Земли меньше полушария, а сжатие Земли не учитывается.
В стереографической проекции картинная плоскость касается поверхности сферы, а точка зрения (ТЗ) расположена в т. О2 (рис. 4), являющейся антиподом точки касания. Эта проекция равноугольная, однако, для решения навигационных задач она неудобна, так как основные линии – локсодромия и ортодромия – изображаются в этой проекции сложными кривыми.
Стереографическая проекция является одной из основных для построения справочных и обзорных карт обширных территорий.
Равноугольная картографическая проекция Гаусса
Равноугольная проекция Гаусса применяется для составления топографических и речных карт, а также и планшетов.
Основной картографической сеткой этой проекции является сетка прямоугольных координат.
В прямоугольной системе координат проекции Гаусса вся поверхность земного эллипсоида разбита на 60 6-ти градусных зон, ограниченных меридианами, каждая из которых имеет свое начало координат – точку пересечения осевого меридиана зоны с экватором.

Рис. 6. Равноугольная проекция Гаусса
Счет зон введется от Гринвичского меридиана к Е от № 1 до № 60. Любую заданную точку в пределах зоны (т. А – рис. 6) получают в пересечении 2-х координатных линий:
1. дуги эллипса nAn?, параллельной осевому меридиану зоны и
2. кратчайшей линии АА?, проведенной из данной точки А перпендикулярно осевому меридиану.
За начало координат в каждой зоне принимается точка пересечения осевого меридиана с экватором.
Удаление точки А? (основание перпендикуляра) от экватора определяется абсциссой Х, а удаление малого круга nn? от осевого меридиана – ординатой У.
Абсциссы Х во всех зонах отсчитываются в обе стороны от экватора («+» — к N).
Ординате У приписывается знак «плюс» (+), когда заданная точка удалена к Е (востоку) от осевого меридиана зоны, и знак «минус» (–), когда заданная точка удалена от осевого меридиана к W (западу).
Для определения отечественного номера зоны, в которой расположена заданная точка с долготой?, применяют формулу:
n = (? + 3°)/6
(ближайшее целое число от 1 до 60).
Деление долготы? производится до ближайшего целого числа (для? = 55°Е? n = 10).
Для вычисления долготы L0 осевого меридиана зоны применяют формулу:
L0 = 6 n ? 3°
(для n = 10 ? L0 = 57°Е).
N – международная нумерация зон (от меридиана 180° к востоку).
Для?E: N = n + 30 и n = N – 30 (для восточного полушария).
Для?W: N = n – 30 и n = N + 30 (для западного полушария).
В табл. 2.31а «МТ-2000» указаны значения отечественных (n) и международных (N) номеров долготных зон, их границы и долгота (?0) осевого меридиана? см. табл. 10.1.
Прямоугольная система координат применяется при производстве топографических работ, составлении топографических карт, расчете направлений и расстояний между точками при малых расстояниях.
Граничными линиями карты в проекции Гаусса служат меридианы и параллели.
Положение заданной точки на карте определяют указанием плоских прямоугольных координат Х и У.
Этим координатам соответствуют километровые линии:
Х = const – параллельна экватору, и
У = const – параллельная осевому меридиану зоны.
Плоские координаты Х и У являются функциями географических координат точки и в общем виде могут быть представлены выражениями:
X = f1 (?,l); Y = f2 (?,l)
где l – разность долгот заданной точки и осевого меридиана, т.е.
l = ? ? L0
Вид функций f1 и f2 выводится так, чтобы обеспечивалось свойство равноугольности проекции при постоянном масштабе вдоль осевого меридиана зоны.
Километровые линии – линии одинаковых значений абсцисс X = const или ординат Y = const, выраженные целым числом км.
Километровые линии (X = const и У = const) ? два семейства взаимно перпендикулярных прямых и оцифровываются соответствующими значениями координат в км. На картах в проекции Меркатора линии X изображаются кривыми, обращенными выпуклостью к полюсу, а линии Y – кривыми, выпуклостью к осевому меридиану и расходящимся по мере удаления от экватора.
Для исключения отрицательных значений ординат оцифровка осевого меридиана увеличена на 500 км.
(При Х = 6656 и У = 23612 ? заданная точка удалена от экватора по осевому меридиану на 6656 км, находится в 23-й зоне и имеет условную ординату 612, а фактически? 112 км к Е).
Прямоугольные координаты Х и У выражают обычно в метрах.
Рамки карт в проекции Гаусса разбиты на минуты по широте и долготе. Значения широт и долгот параллелей и меридианов, ограничивающих карту, надписываются в углах рамки.
Меридианы и параллели на карту не наносятся. При необходимости их можно провести через соответствующие деления минут широты и долготы на рамках карты.
Угол между километровой линией У = const и истинным меридианом называется сближением или схождением меридианов. Этот угол (?) отсчитывается от северной части истинного меридиана по часовой стрелке до северной части километровой линии У = const
Схождению меридианов приписывают знак «плюс» (+), если заданная точка расположена к Е (востоку) от осевого меридиана, и знак «минус» (–), если она расположена к W (западу) от осевого меридиана зоны.
При известных координатах? и? заданной точки угол? вычисляется по формуле:
? = (? ? L0) sin ?
где L0 – долгота осевого меридиана зоны.

Ввиду ограниченной ширины зоны кратчайшие линии на картах в проекции Гаусса, изображаются практически прямыми линиями, а масштаб по всей карте постоянен.
Эти свойства, а также наличие сетки прямоугольных координат являются главными причинами широкого применения данной проекции при всех топографических, геодезических и гидрографических работах.
Для решения задач, связанных с использованием как географических, так и прямоугольных координат точек, а также с прокладкой отрезков локсодромий, применяются карты, составленные в нормальной проекции Меркатора с дополнительно нанесенной сеткой прямоугольных координат Гаусса. Основные свойства таких карт полностью соответствуют таковым для нормальной проекции Меркатора.



 
Статьи по теме:
Где найти мастера рун Witcher 3 руны
Побочные задания в дополнении «Каменные сердца» не так многочисленны, точнее, их совсем мало. Оно и понятно, водоворот событий при прохождении основного сюжета затягивает с головой, и отвлекаться от увлекательнейшего повествования совершенно не хочется. О
Прохождение castlevania lords of shadow 2
Прохождение Castlevania Lords of Shadow 2 Сначала обучение. Надо будет встать с трона и пройти в зал, где нажать все кнопки, находящиеся на дисплее слева. После появления солдат, продолжаем выполнять указания, просто бить их нет смысла. Есть некоторая пр
Всё, что вам нужно знать об SD-картах памяти, чтобы не облажаться при покупке Подключаем sd
(4 оценок) Если на вашем устройстве недостаточный объем внутренней памяти, можно использовать SD-карту как внутреннее хранилище для вашего телефона Android. Данная функция, называемая Adoptable Storage, позволяет ОС Андроид форматировать внешний носител
Как повернуть колёса в GTA Online и многое другое в FAQ по GTA Online
Почему не подключается gta online?Всё просто, сервер времено выключен/неактивен или не работает. Зайди на другой.Как отключить онлайн игры в браузере. Как отключить запуск приложения Online Update Clinet в Connect manager? ... На сккоко я знаю когда ты ум